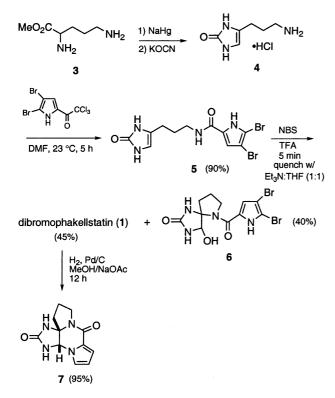

Synthesis of dibromophakellstatin and dibromoisophakellin

Kevin J. Wiese, Kenichi Yakushijin and David A. Horne*

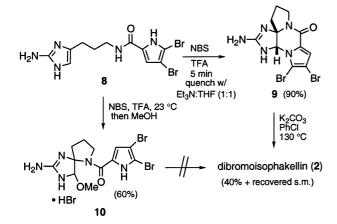
Oregon State University, Department of Chemistry, Corvallis, OR 97331, USA Received 14 May 2002; accepted 21 May 2002

Abstract—A short synthesis of the marine sponge alkaloids dibromophakellstatin (1) and dibromoisophakellin (2) is described. The synthesis of 1 centers on a putative biomimetic oxidative cyclization of imidazolone 5. Thermal rearrangement of dibromophakellin (9) in the presence of K_2CO_3 afforded dibromoisophakellin (2). © 2002 Elsevier Science Ltd. All rights reserved.

Marine sponges continue to be a source of structurally interesting and biologically active nitrogen heterocyclic metabolites.¹ Recently, Pettit and co-workers isolated dibromophakellstatin (1) from the sponge, Phakellia *mauritiana.*² 1 has been shown to posses potent antitumor activity in a number of different human celllines. The structurally related sponge metabolite dibromoisophakellin (2) was isolated from Acanthella carteri by Maximov and co-workers.³ Structures of 1 and 2 were elucidated by X-ray crystallographic analysis. Neither metabolite has been synthesized; however, a synthetic approach to 1 has appeared recently in the literature.⁴ In this communication, we report the first synthesis of racemic 1 and 2 using a biomimetic oxidative cyclization protocol that sets the stage for construction of the tetracyclic framework.


Although the biosynthesis of dibromophakellstatin (1) is unknown, aminopropyl imidazolone 4 was envisioned as a hypothetical forerunner. We have shown that 4 is a useful intermediate in the putative biomimetic syntheses of related imidazolone derived sponge metabolites, slagenins⁵ and axinohydantoins.⁶ 4 is readily prepared from ornithine methyl ester (3) via Akabori reduction and condensation with cyanate (Scheme 1). Acylation of the free base of 4 with 2,3-dibromo(trichloro-acetyl)pyrrole⁷ gave carboxamide 5 in excellent yield.

After considerable experimentation, oxidation of **5** with NBS (trifluoroacetic acid, 0°C, 5 min) followed by concentration and addition of triethylamine:THF (1:1) produced dibromophakellstatin (1) and spiro adduct 6^8 in 45 and 40% yields, respectively. These products are easily separated by flash chromatography. All spectral data of synthetic 1 were in agreement with those reported for the natural product.² Hydrogenolysis of 1 produced phakellstatin (7).⁹


Next, attempts were made to synthesize dibromoisophakellin (2) from dihydrooroidin $(8)^{10}$ (Scheme 2). An interesting structural feature of 2 is the fused C-C pyrrole connection to the cyclic guanidine core. There are several notable natural products such as styloguanidines¹¹ and 12-chloro-11-hydroxydibromoisophakellin¹² that contain an isophakellin structural motif for which no prior synthesis has been reported.¹³ In the elegant biomimetic synthesis of dibromophakellin (9) by Büchi,¹⁴ bromine oxidation of 8 followed by treatment with KO'Bu did not lead to any C-C pyrrole products resembling dibromoisophakellin (2). In further pursuing this line of research, we were also unable to produce 2 directly from 8 under various experimental conditions. It was discovered, however, that the use of NBS in TFA followed by evaporation and quenching with TEA:THF (1:1) gave excellent vields of racemic dibromophakellin (9).¹⁵ These conditions represent a noteworthy improvement over the original Büchi conditions of Br₂/AcOH. Using a less reactive brominating reagent such as NBS and a stronger acid (TFA), substantially higher yields of product were obtained for both the imidazolone and aminoimidazole series. In fact, we were unable to obtained dibromophakellstatin (1) from 5 using $Br_2/$ AcOH. Quenching the intermediate derived from oxidized 8 with MeOH produced spiro adduct 10.16

^{*} Corresponding author. Tel.: (541)-737-8180; fax: (541)-737-2062; e-mail: horned@ucs.orst.edu

^{0040-4039/02/} \fiss - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00966-8

Scheme 1.

Attempts to convert **10** to dibromoisophakellin **(2)** were unsuccessful.

Finally, heating dibromophakellin (9) in the presence of K_2CO_3 caused N to C rearrangement to dibromoisophakellin (2) plus recovered starting material. All spectral data of synthetic 2 were in agreement with those reported for the natural product.^{3,17} While the rearrangement of dibromophakellin represents the first successful segway to the isophakellin series, clearly, more efficient methods will be needed for the more structurally challenging styloguanidine family.

Acknowledgements

Financial support from the National Institutes of Health and Chugai Pharmaceutical Co. is gratefully acknowledged. K.J.W. thanks Molecular Probes, Eugene, OR for a summer fellowship.

References

- 1. Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1–49 and references cited therein.
- Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J. C.; Schmidt, J. M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod. 1997, 60, 180–183.
- Fedoreyev, S. A.; Utkina, N. K.; Ilyin, S. G.; Reshetnyak, M. V.; Maximov, O. B. *Tetrahedron Lett.* 1986, 27, 3177–3180.
- Jacquot, D. E. N.; Hoffman, H.; Polburn, K.; Lindel, T. Tetrahedron Lett. 2002, 43, 3699–3702.
- Barrios Sosa, A. C.; Yakushijin, K.; Horne, D. A. Org. Lett. 2000, 2, 3443–3444.
- 6. Barrios Sosa, A. C.; Yakushijin, K.; Horne, D. A. J. Org. Chem., in press.
- Bailey, D. M.; Johnson, R. E. J. Med. Chem. 1973, 16, 1300–1302.
- 8. Compound 6: ¹H NMR (acetone- d_6) 11.89* (bs, 1H), 7.65* (bs, 1H), 6.74 (d, J=2.2 Hz, 1H), 6.54* (bs, 1H), 5.52 (m, 1H), 5.46* (d, J=5.3 Hz, 1H), 3.87–3.75 (m, 1H), 3.65–3.58 (m, 1H), 2.68–2.59 (m, 1H), 2.04–1.93 (m, 1H), 1.88–1.76 (m, 2H). *D₂O exchangeable. ¹³C NMR (acetone- d_6) 161.9 (s), 159.0 (s), 128.4 (s), 115.6 (d), 106.3 (s), 99.2 (s), 85.4 (s), 82.5 (d), 49.2 (t), 33.6 (t), 23.3 (t).
- 9. Compound 7: ¹H NMR (DMSO-d₆) 8.13* (bs, 1H), 7.79* (bs, 1H), 7.11 (m, 1H), 6.65 (m, 1H), 6.26 (m, 1H), 5.74 (s, 1H), 3.55–3.38 (m, 2H), 2.25–1.94 (m, 4H). *D₂O exchangeable. ¹³C NMR (DMSO-d₆) 159.6 (s), 156.5 (s), 124.1 (s), 122.7 (d), 112.1 (d), 111.6 (d), 79.5 (s), 68.5 (d), 45.2 (t), 39.5 (t), 20.3 (t).
- Olofson, A.; Yakushijin, K.; Horne, D. A. J. Org. Chem. 1998, 63, 1248–1253.
- Kato, T.; Shizuri, Y.; Izumida, H.; Yokoyama, A.; Endo, M. *Tetrahedron Lett.* **1995**, *36*, 2133–2136.
- Tsukamoto, S.; Kazuhiro, T.; Ohta, T.; Matsunga, S.; Fusetani, N.; van Soest, R. W. M. J. Nat. Prod. 2001, 64, 1576–1578.
- For a synthetic approach to the bisguanidine alkaloids styloguanidine and palau'amine, see: (a) Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle, W. C. J. Am. Chem. Soc. 1997, 119, 7159–7160; (b) Dilley, A. S.; Romo, D. Org. Lett. 2001, 3, 1535–1538.
- Foley, L. H.; Büchi, G. J. Am. Chem. Soc. 1982, 104, 1776–1777.
- (a) Sharma, G. M.; Burkholder, P. R. Chem. Commun. 1971, 1, 151–152; (b) Sharma, G.; Magdoff-Fairchild, B. J. Org. Chem. 1977, 42, 4118–4124.
- 16. Compound 10: ¹H NMR (DMSO-*d*₆) 12.75* (bs, 1H), 10.08* (bs, 1H), 9.56* (bs, 1H), 8.33* (bs, 2H), 6.83 (s, 1H), 5.07 (s, 1H), 3.78–3.74 (m, 2H), 3.32 (s, 3H), 2.46–2.37 (m, 1H), 1.98–1.79 (m, 3H). *D₂O exchangeable. ¹³C NMR (DMSO-*d*₆) 159.7 (s), 159.3 (s), 128.5 (s), 116.3 (d), 107.4 (s), 99.1 (s), 91.8 (d), 86.3 (s), 56.9 (q), 49.8 (t), 33.5 (t), 23.7 (t).
- 17. The following revised ¹³C NMR assignments for dibromoisophakellin (2) are more consistent with the structure than those reported in Ref. 3: δ 96.5 (s, C-3), 108. 6 (s, C-2), 122.6 and 122.8 (s×2, C-4 and C-5).